
NELSON SENIOR MATHS METHODS 12 
FULLY WORKED SOLUTIONS 

Chapter 2 Discrete random variables 
Exercise 2.01 Discrete random variables 

Concepts and techniques 

1 a Continuous 

 b Discrete 

 c Discrete 

 d Continuous 

 e Discrete 

 f Continuous 

 g Discrete 

 h Continuous 

2 a X = {1, 2, 3, 4, 5, 6} 

 b X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 

 c X = {0, 1, 2, 3} 

 d X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 

 e X = {x: 0 < x < 2} 
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3 a Discrete, random 

 b Discrete, random 

 c Discrete, random 

 d Discrete, non-random (the number chosen by a person could be influenced  

  by their personal preferences and is therefore not random) 

 e Continuous, random 

4 D as height can be measured as accurately as you want 

5 C as the number of traffic light stops is a countable number 

6 B because you can stop at 0, 1, … up to 7 of the traffic lights 

7 E P(2 different) = 
2 3

1 1
5

2

2 3 3
10 5

C C
C
× ×

= =  

8 D P(R∩T) = P(R) × P(T|R) 

      = 0.2 × 0.5 

  P(R∩T) = 0.1 

  P(R∪T) = P(R) + P(T) – P(R∩T) 

      = 0.2 + 0.6 – 0.1 

  P(R∪T) = 0.7 

9 D P(M ∪ Q) = P(M) + P(Q) – P(M ∩ Q) 

             0.7 = 0.4 + 0.5 – P(M ∩ Q) 

  P(M ∩ Q) = 0.2 

  ∴ M and Q are NOT mutually exclusive. 
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10 D S = ‘car starts’, T = ‘on time’ 

 

  P(late) = 0.08 + 0.12 = 0.2 

11 

  

 a P(not defective) = 0.396 + 0.294 + 0.291 

       = 0.981 

 b P(B|D) = 0 006 0 316
1 0 981

. .
.

=
−

 = 6
19
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12 Possible outcomes and sum of faces 

1, 1 2, 1 3, 1 4, 1  2 3 4 5 

1, 2 2, 2 3, 2 4, 2  3 4 5 6 

1, 3 2, 3 3, 3 4, 3  4 5 6 7 

1, 4 2, 4 3, 4 4, 4  5 6 7 8 

n(S) = 16 

1 1 3 1 3 1 1(2, ), (3, ), (4, ), (5, ), (6, ), (7, ), (8, )
16 8 16 4 16 8 16
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Reasoning and communication 

13 Successive heads means heads in a row 

a P(H = 3) = 2 0 125
16

.=

b P(H > 3) = 1 0 0625
16

.=

c P(H < 3) = 1 – P(H = 3 or H = 4) = 1 – 3 13 0 8125
16 16

.= =

d P(H = 5) = 0 

e P(H ≥ 2) = 1 – (H = 0 or H = 1) = 8 81 0 5
16 16

.− = =
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f {0, 1, 2, 3, 4},  

p(0) = 0.0625, p(1) = 0.4375, p(2) = 0.3125, p(3) = 0.125, p(4) = 0.0625 

14 M ∈{1, 2, 3, 4, 5, 6} 

Two dice 

P(M = m) = 11 1 7 5 1 1(1, ), (2, ), (3, ), (4, ), (5, ), (6, )
36 4 36 36 12 36
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15 

a T ∈ {0, 1, 2, 3, 4} 

P(T = t) = 1 1 3 1 1(0, ), (1, ), (2, ), (3, ), (4, )
16 4 8 4 16

b P(T > 2) = P(T = 3 or T = 4) = 1 4 5
16 16
+

=
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Exercise 2.02 Discrete probability distributions 

Concepts and techniques 

1 A (1, 1)  (1, 2)  (1, 3)  (1, 4)  (1, 5)  (1, 6) 

(2, 1)  (2, 2)  (2, 3)  (2, 4)  (2, 5)  (2, 6) 

(3, 1)  (3, 2)  (3, 3)  (3, 4)  (3, 5)  (3, 6) 

(4, 1)  (4, 2)  (4, 3)  (4, 4)  (4, 5)  (4, 6) 

(5, 1)  (5, 2)  (5, 3)  (5, 4)  (5, 5)  (5, 6) 

(6, 1)  (6, 2)  (6, 3)  (6, 4)  (6, 5)  (6, 6) 

There are 5 doubles that do not add to more than 10. 5
36

There are 2 pairs that add to more than ten but are not a double. 2 1
36 18

=

There is 1 double that adds to more than 10. 1
36

There are 28 other possible combinations. 28 7
36 9

=

2 D p(x) = 
3( 2)

35
x −

( ) 11  
35

p =
−

It is not a probability function because p(1) < 0. 
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3 B 

 

 

  2m + 5m + 6m + 3m = 1 

  16m = 1  ⇒  m = 1 0.0625
16

=  

4 E 

 For the discrete probability distribution shown below. 

x 3 5 8 9 11 

P(X = x) 0.12 0.25 0.33 0.21 0.09 

 

 P(x ≤ 8) = 0.12 + 0.25 + 0.33 = 0.7 

5 B The sample space for tossing three coins is 

  HHH,  HHT,  HTH,  THH,  HTT,  THT,  TTH,  TTT 

  X = {0, 1, 2, 3} 

   

 

 

 

x 2 5 8 12 

P(X = x) 2m 5m 6m 3m 

x 0 1 2 3 

p(x) 1
8

 3
8

 3
8

 1
8
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6 B 

x 0 1 2 3 4 

P(X = x) 0.15 0.25 n 0.35 0.05 

0.15  + 0.25 + n + 0.35 + 0.05 = 1 

n = 0.2 

7 a 

( )p x∑  = 0.9 instead of 1 so it could NOT represent a probability distribution.
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 b  

   

  ( )p x∑  = 1 so could represent a probability distribution. 

 c 

   

  p(2) < 0 so could NOT represent a probability distribution. 
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8 a 

b 

c 0.1+ 0.2 + 0.3 + 0.4 = 1, which satisfies the condition to be a probability 

distribution 
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9  and  for x = 1, 2, 3, 4 

 a 

   

 b , , all positive. 

 c 
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Reasoning and communication 

10 Two tetrahedral dice Sum of faces F 

(1, 1)  (1, 2)  (1, 3)  (1, 4) (2)  (3)  (4)  (5) 

(2, 1)  (2, 2)  (2, 3)  (2, 4) (3)  (4)  (5)  (6) 

(3, 1)  (3, 2)  (3, 3)  (3, 4) (4)  (5)  (6)  (7) 

(4, 1)  (4, 2)  (4, 3)  (4, 4) (5)  (6)  (7)  (8) 

f 2 3 4 5 6 7 8 

P(F = f) 
1

16
1
8

3
16

1
4

3
16

1
8

1
16
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11 Two dice      Maximum on upper faces 

 (1, 1)  (1, 2)  (1, 3)  (1, 4)  (1, 5)  (1, 6)  (1)  (2)  (3)  (4)  (5)  (6) 

 (2, 1)  (2, 2)  (2, 3)  (2, 4)  (2, 5)  (2, 6)  (2)  (2)  (3)  (4)  (5)  (6) 

 (3, 1)  (3, 2)  (3, 3)  (3, 4)  (3, 5)  (3, 6)  (3)  (3)  (3)  (4)  (5)  (6) 

 (4, 1)  (4, 2)  (4, 3)  (4, 4)  (4, 5)  (4, 6)  (4)  (4)  (4)  (4)  (5)  (6) 

 (5, 1)  (5, 2)  (5, 3)  (5, 4)  (5, 5)  (5, 6)  (5)  (5)  (5)  (5)  (5)  (6) 

 (6, 1)  (6, 2)  (6, 3)  (6, 4)  (6, 5)  (6, 6)  (6)  (6)  (6)  (6)  (6)  (6) 

 a  

  

 b 
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12 Two six-sided dice Sum of faces (S) 

(1, 1)  (1, 2)  (1, 3)  (1, 4)  (1, 5)  (1, 6) (2)  (3)  (4)  (5)  (6)  (7) 

(2, 1)  (2, 2)  (2, 3)  (2, 4)  (2, 5)  (2, 6) (3)  (4)  (5)  (6)  (7)  (8) 

(3, 1)  (3, 2)  (3, 3)  (3, 4)  (3, 5)  (3, 6) (4)  (5)  (6)  (7)  (8)  (9) 

(4, 1)  (4, 2)  (4, 3)  (4, 4)  (4, 5)  (4, 6) (5)  (6)  (7)  (8)  (9)  (10) 

(5, 1)  (5, 2)  (5, 3)  (5, 4)  (5, 5)  (5, 6) (6)  (7)  (8)  (9)  (10)  (11) 

(6, 1)  (6, 2)  (6, 3)  (6, 4)  (6, 5)  (6, 6) (7)  (8)  (9)  (10)  (11)  (12) 

a 

x 2 3 4 5 6 7 8 9 10 11 12 

p(x) 1
36

1
18

1
12

1
9

5
36

1
6

5
36

1
9

1
12

1
18

1
36

b 

c ( )ip x∑  = 1 2 3 4 5 6 5 4 3 2 1 36 1
36 36 36 36 36 36 36 36 36 36 36 36

+ + + + + + + + + + = =  

  2 3   4  5 6   7   8 9   10   11 12 

Therefore it is a probability distribution. 
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13 P(H) = 2
3  and P(T) = 1

3  

 
Let X be the random variable representing the largest number of successive heads that  

 occur. 

 HHH, HHT, HTH, THH, HTT, THT, TTH, TTT 

 P(HHH) = ( )32
3

8
27

=  

 ( ) ( ) ( )22 1
3 3

123two head  
7

s
2

P = × × =  

 ( ) ( ) ( )22 1
3 3

63one he
2

ad
7

 P × × ==  

 ( ) ( )31
3no heads  1

27
P = =  

 a 

x 0 1 2 3 

p(x) 1
27  

10
27  

8
27  

8
27  

 

 b 
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14 Prime numbers = {2, 3, 5}, Non-prime numbers = {1, 4, 6} 

a 

b 
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15        Number of girls 

  

x 0 1 2 3 4 

p(x) 
1

16
 1

4
 3

8
 1

4
 1

16
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16 n = 6 × 6 × 6 = 216 

n(triples) = 6 and win $20 

n(exactly two the same) = 6 5
1 1 3 90C C× × =  and win $5 

n(all different numbers) = 216 – 6 – 90 = 120 

triple double 

all 

different 

Winnings x 20 5 –5

p(x) 
6 1

216 36
=

90 5
216 12

=
120 5
216 9

=
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Exercise 2.03 Estimating probabilities 

Concepts and techniques 

1 389 0.289
1344

=  

2 a 233 0.178
1309

=  

 b 53 0.185
286

=  

3 16 0.4
40

=  

4 a 23800 0.279
85200

=  

 b 2300 0.097
23800

=  

5 a 94100 0.322
292400

=  

 b 10 100 0.107
94 100

=  
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Exercise 2.04 Uniform discrete probability distributions 

Concepts and techniques 

1 A There are 12 sides, only one of which is an 8 so 1
12

. 

2 B There are 5 equally likely outcomes, so 1
5

. 

3 a N = {1, 2, 3, 4} All equally likely, so uniform. 

b X = {0, 1, 2, 3, 4, …, 9} All equally likely, so uniform. 

c S = {0, 1, 2, 3, 4, …, 9} All equally likely, so uniform. 

d D = {1, 2, 3, 4, …, 20} Non-uniform. Probability of a particular disc on draw one 

is 1
20

but on the second draw 1
19

 or 0. 

e M = {1, 2, 3, 4, 5, 6} All equally likely, so uniform. 

f T = (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} Not equally likely, so non-uniform 

4 

All numbers are equally likely to be drawn, so uniform distribution. 
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5 a 

   

 b P(n ≤ 4) 3
8

=  

 c P(n ≠ 8) 7
8

=  

 d P(n is even) 3
8

=  

 e P(n is not even) 5
8

=  

 f P(2 ≤ n ≤ 8) 5
8

=  
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6 a 

b P(x ≥ 2) = 0.9 

c P(x < 4) = 0.3 

d P(2 ≤ x ≤ 5) = 0.4 

7 S = {1, 2, 3, …, 30} 

a P(s = 17) = 1
30

b P(s ≠ 17) = 29
30

c P(5 ≤ s ≤ 22) = 3
5

d P(s > 17) = 13
30

e P(s ≤ 17) = 17
30
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Reasoning and communication 

8 a P(t > 8 min) 240 0.4203
571

= ≈   

 b P(t < 5 min) 150 0.2627
571

= ≈  

 c P(5 min ≤ t ≤ 9 min) 241 0.4221
571

= ≈   

 d P(7 min ≤ t ≤ 15 min) 301 0.5271
571

= ≈  
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Exercise 2.05 The hypergeometric distribution 

Concepts and techniques 

1 A As many as 5 can be selected in the sample of size 5. 

2 D The probability of success in each trial is constant is not true because if one is 

already chosen and not replaced, it reduces the probability of it being selected 

again 

3 B As 10 is the most that can be chosen. 

For Questions 4 and 5. P(X = 3) = 

12 38
3 2

50
5

  
  
  
 
 
 

4 B 5, as 3 of one type are being selected and 2 of the other type are being selected. 

5 D X is the variable ‘success’ and we are choosing 3 from 12. 

6 a N = 52, k = 13, n = 4, X ∈ {0, 1, 2, 3, 4} 

b N = 6, k = 2, n = 3, X ∈ {0, 1, 2} 

c N = 50, k = 9, n = 10, X ∈ {0, 1, 2, …, 9} 

d N = 200, k = 20, n = 40, X ∈ {0, 1, 2, …, 20} 

e N = 95, k = 35, n = 12, X ∈ {0, 1, 2, …, 12} 

7 a P(x = 2) = 
39 13

2 2
52

4

C C
C
×

= 0.2135 

b P(x = 1) = 
4 2

2 1
6

3

C C
C
×

=0.6 
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 c P(x = 4) = 
41 9

6 4
50

10

C C
C
×

= 0.0552 

 d P(x = 10) = 
180 20

30 10
200

40

C C
C
×

= 0.0012 

 e P(x = 3) = 
60 35

9 3
95

12

C C
C
×

=0.1770 

8 a N = 120, n = 20, k = 30, x = 7 

  P(x = 7) = 
90 30

13 7
120

20

C C
C
×

=0.1136 

 b N = 50, n = 15, k = 10, x = 3 

  P(x = 3) = 
40 10

12 3
50

15

C C
C
×

= 0.2979 

 c N = 200, n = 50, k = 40, x = 9 

  P(x = 9) = 
160 40

41 9
200

50

C C
C
×

= 0.1523 

 d N = 30, n = 8, k = 5, x = 3 

  P(x = 3) = 
25 5

5 3
30

8

C C
C
×

=0.0908 

 e N = 150, n = 25, k = 40, x = 11 

  P(x = 11) = 
110 40

14 11
150

25

C C
C
×

= 0.0217 
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Reasoning and communication 

9 P(x = 2 spades) = 
39 13

4 2
52

6

C C
C
×

= 0.3151 

10 a P(three will be defective) =
85 15

16 3
100

19

0.2705C C
C
×

=

b P(at least three will be defective) = 1 – P(0) – P(1) – P(2) 

  = 1 – 0.0321… – 0.1367… – 0.2534… 

      = 0.5777 

11 a 200 = 188 + 12, N = 200, k = 12, n = 20 

P(exactly three are colourblind) = 
188 12

17 3
200

20

0.0833C C
C
×

=

b P(at least one is colourblind) = 1 – P(0) 

 = 1 – 
188 12

20 0
200

20

1 0.2718 0.7282C C
C
×

= − =  

12 a P(a single entry will win the jackpot) = 
39 6

0 6
45

6

0.000 000 1228C C
C
×

=

b P(a single entry will win a prize) = P(3) + P(4) + P(5) + P(6) 

39 6 39 6 39 639 6
3 3 1 5 0 62 4
45 45 45 45

6 6 6 6

C C C C C CC C
C C C C
× × ××

= + + +

= 0.022 441 + 0.001 364 + 0.000 029 + 0.000 000 1 

= 0.0238 
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13 a P(no unusable components are found) = 
238

20
250

20

0.3590C
C

=  

 b P(three unusable components are found) = 
238 12

17 3
250

20

0.0507C C
C
×

=  

 c P(the order will be rejected) = P(x > 4) 

      = 1 – P(0) – P(1) – P(2) – P(3) 

      = 1 – 0.3598 – 0.3935 – 0.1869 – 0.0507  

      = 0.0098 

14 P(the trial will result in a hung jury) = P(x > 1)  

      = 1 – P(0)  

      = 1 – 
47 3

12 0
50

12

C C
C
×  

      1 0.4304= −  

      0.5696=  
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Exercise 2.06 Expected value 

Concepts and techniques 

1 C 22.9, as the average of the scores is 22.9 

2 D As 1.1 = 0 × 0.2 + 1 × 0.5 + 2 × 0.3 

3 B As 1.20 = 0 × 0.2401 + 1 × 0.4116 + 2 × 0.2646  + 3 × 0.0756 + 4 × 0.0081 

4 E(X) = 0 × 0.5 + 5 × 0.1 + 10 × 0.2 + 15 × 0.2 = 5.5 

5 a E(X) = 2 × 1
3

+ 3 × 1
2

+ 11 × 1
6

        = 4 

b E(X) = –5 × 1
4

– 4 × 1
8

+ 1 × 1
2

+ 2 × 1
8

       = –1 

c E(X) = 1 × 0.4 + 3 × 0.1 + 4 × 0.2 + 5 × 0.3

        = 3 

6 E(X) = 0 × 0.1 + 1 × 0.2+ 2 × 0.3 + 5 × 0.4

  = 2.8 

7 a F: E(X) = 57.5 

b M: E(X) = 0.3 × 57.5 = 17.25 
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8 a 

  TI-Nspire CAS 

   

  ClassPad 

   

  E(X) = 1200 × 0.056 + 1300 × 0.189 + 1400 × 0.274
 
+ 1500 × 0.296  

    + 1600 × 0.185
 

          = 1437 
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b 

TI-Nspire CAS 

ClassPad 

E(X) = 300 × 0.268 + 310 × 0.333 + 320 × 0.162 + 330 × 0.14 

+ 340 × 0.062 + 350 × 0.023 + 360 × 0.012

  = 315 

9 E(X) = 1 × 1
12

+ 2 × 5
12

+ 3 × 1
3

+ 4 × 1
6

= 2 7
12
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Reasoning and communication 

10 X = {0, 1, 2, 3} 

X 0 1 2 3 

P(x) 
1
8

 1
2

 1
4

 1
8

 

 

 a E(X) = 0 × 1
8

 + 1 × 1
2

 + 2 × 1
4  

+ 3 × 1
8

= 1.375 

 b P(H) = 2
3

 

X 0 1 2 3 

P(x) 
1
27

 10
27

 8
27

 8
27

 

 

 E(X) = 0 × 1
27

 + 1 × 10
27

 + 2 × 8
27  

+ 3 × 8
27

= 1.852 
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11 a 1  1  1  1  1  1 

1  2  2  2  2  2 

1  2  3  3  3  3 

1  2  3  4  4  4 

1  2  3  4  5  5 

1  2  3  4  5  6 

S 1 2 3 4 5 6 

P(s) 
11
36

9 1
36 4

=
7
36

5
36

3 1
36 12

=
1
36

b E(S) = 2.528 
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12 a  

  (1, 2)  (1, 3)  (1, 4)  (1, 5)  (3)  (4)  (5)  (6) 

  (2, 1)  (2, 3)  (2, 4)  (2, 5)  (3)  (5)  (6)  (7) 

  (3, 1)  (3, 2)  (3, 4)  (3, 5)  (4)  (5)  (7)  (8) 

  (4, 1)  (4, 2)  (4, 3)  (4, 5)    (5)  (6)  (7)  (9) 

  (5, 1)  (5, 2)  (5, 3)  (5, 4)  (6)  (7)  (8)  (9)  

S 3 4 5 6 7 8 9 

P(s) 1
10

 1
10

 1
5

 1
5

 1
5

 1
10

 1
10

 

 

 b E(S) = 3 × 1
10

 + 4 × 1
10

 + 5 × 1
5  

+ 6 × 1
5

 + 7 × 1
5

 + 8 × 1
10  

+ 9 × 1
10

= 6 
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13 Two dice Differences 

(1, 1)  (1, 2)  (1, 3)  (1, 4)  (1, 5)  (1, 6) 0  1  2  3  4  5 

(2, 1)  (2, 2)  (2, 3)  (2, 4)  (2, 5)  (2, 6) 1  0  1  2  3  4 

(3, 1)  (3, 2)  (3, 3)  (3, 4)  (3, 5)  (3, 6) 2  1  0  1  2  3 

(4, 1)  (4, 2)  (4, 3)  (4, 4)  (4, 5)  (4, 6) 3  2  1  0  1  2 

(5, 1)  (5, 2)  (5, 3)  (5, 4)  (5, 5)  (5, 6) 4  3  2  1  0  1 

(6, 1)  (6, 2)  (6, 3)  (6, 4)  (6, 5)  (6, 6) 5  4  3  2  1  0 

P(the numbers differ by three or more) = 12 1
36 3

=

P(the numbers differ by one or two) = 18 1
36 2

=

P(the numbers are equal) = 6 1
36 6

=

X (number of places moved) 1 2 4 

P(X = x) 1
3

1
2

1
6

E(X) = 1 × 1
3

+ 2 × 1
2

+ 4 × 1
6

= 2 
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14  

 

  

 a 8k + 5k + 4k + 2k + k = 1 

  20k = 1 

  k = 1
20

= 0.05 

 b The probability of 1 and 2 are relatively high, so expect E(X) to be less than 3. 

 c E(X) = 1 × 8
20

 + 2 × 5
20

 + 3 × 4
20

 + 4 × 2
20

 + 5 × 1
20

 = 43
20

= 2.15 

x 1 2 3 4 5 

P(X = x) 8k 5k 4k 2k k 
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15 

1 1 1 1
8 3 4
17 1
24
24 24 7 [1]

x y

x y

x y

+ + + + =

+ + =

+ =

E(X) = 5 2
3

so 2 × 1
8

+ 3 × 1
3

+ 5 × 1
4

+ 8x + 12y = 5 2
3

2 1
2

+ 8x + 12y = 5 2
3

8x + 12y = 19
6  

48x + 72y = 19 

48x + 48y = 14 2 × [1] 

  24y = 5 

y = 5
24

17 1
24

x y+ + =  

17 5 1
24 24

2
24
1 5,

12 24

+ + =

=

= =

x

x

x y

w 2 3 5 8 12 

P(W = w) 1
8

1
3

1
4

x y 
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16 Outcomes : {H, TH, TTH, TTTH, TTTTH, TTTTT} 

 X = {1, 2, 3, 4, 5} 

x 1 2 3 4 5 

P(X = x) 0.5 0.25 0.125 0.0625 0.0625 

 

 E(X) = 1 × 0.5 + 2 × 0.25 + 3 × 0.125 + 4 × 0.0625 + 5 × 0.0625 

          = 1.9 

17 N = 6, k = 2, n = 3 

  

 

 

 

 E(X) = 0 × 1
5

 + 1 × 3
5

 + 2 × 1
5

= 1 

x 0 1 2 

P(X = x) 4
3

6
3

1
5

C
C

=  
4 2

2 1
6

3

3
5

C C
C
×

=  
4 2

1 2
6

3

1
5

C C
C
×

=  
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Exercise 2.07 Variance and standard deviation 

Concepts and techniques 

The variance of Z is: 

1 A 1.0 2
zσ  = E(Z2) – µ2, where µ = E(Z) 

µ = E(Z) = 1 × 0.1 + 2 × 0.2 + 3 × 0.3 + 4 × 0.4 

µ = 3 

E(Z2) = 12 × 0.1 + 22 × 0.2 + 32 × 0.3 + 42 × 0.4 

  = 0.1 + 0.8 + 2.7 + 6.4 

  = 10 

2
zσ  = E(Z2) – µ2 

 = 10 – 9 = 1 

TI-Nspire CAS 
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 ClassPad 

  

2 A 2
yσ  = E(Y2) – µ2, where µ = E(Y) 

  µ = E(Y) = 100 × 0.2 + 200 × 0.4 + 300 × 0.3 + 400 × 0.1 

  µ = 230 

  E(Y2) = 1002 × 0.2 + 2002 × 0.4 + 3002 × 0.3
 
+ 4002 × 0.1 

            = 61 000 

  2
yσ  = E(Y2) – µ2  

         = 61 000 – 2302 = 8100 

  σy = 90 

  The standard deviation of Y is 90.
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3 A a + 2a + 3a + 4a = 1 ⇒ a = 0.1 

2
mσ  = E(M2) – µ2, where µ = E(M) 

µ = E(M) = 1 × 0.1 + 2 × 0.2 + 3 × 0.3 + 4 × 0.4 

µ = 3 

E(M2) = 12 × 0.1 + 22 × 0.2 + 32 × 0.3 + 42 × 0.4 

  = 10 

2
mσ  = E(M 2) – µ2 

 = 10 – (3)2 = 1 

σm = 1 

The standard deviation of M is 1. 

4 2
wσ  = E(W 2) – µ2, where µ = E(W) 

µ = E(W) = 1 × 0.1 + 2 × 0.3 + 4 × 0.4 + 6 × 0.2 

    = 3.4 

E(W 2) = 02 × 0.1 + 22 × 0.3 + 42 × 0.4 + 62 × 0.2 

  = 14 

2
wσ  = E(W 2) – µ2 

 = 14 – 3.42 = 3.24 

σw = 3.24 1.8=  

The variance of W is 3.24 and the standard deviation of W is 1.8. 
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5 2
xσ = E(X2) – µ2 

       = 280 – 142  

       = 84 

6 2
yσ = E(Y 2) – µ2 

      = 587 – 232  

       = 58 

 σy ≈ 7.62 

 The standard deviation is 7.62. 

7 a n(X) = 20 

   

 b E(X) = 3 × 0.05 + 4 × 0.05 + 6 × 0.15 + 7 × 0.45 + 8 × 0.2
 
+ 9 × 0.1 

           = 6.9 

 c E(W 2) = 32 × 0.05 + 42 × 0.05 + 62 × 0.15
 
+ 72 × 0.45 + 82 × 0.2 + 92 × 0.1 

   = 49.6 

  2
wσ  = E(W 2) – µ2 

         = 49.6 – 6.92 = 1.99 
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8 a 

n 0 1 2 3 4 5 6 7 8 9 

p(n) 1
30

1
30

1
15

1
10

1
5

1
6

2
15

1
10

1
10

1
15

b E(N) = 0 × 1
30

+ 1 × 1
30

+ 2 × 1
15

+ 3 × 1
10

+ 4 × 1
5

+ 5 × 1
6

+ 6 × 2
15

+ 7 × 1
10

+ 8 × 1
10

+ 9 × 1
15

 = 5 

c E(N 2) = 02 × 1
30

+ 12 × 1
30

+ 22 × 1
15

+ 32 × 1
10

+ 42 × 1
5

+ 52 × 1
6

+ 62 × 2
15

+ 72 × 1
10

+ 82 × 1
10

+ 92 × 1
15

  = 30.07 

2
nσ  = E(N 2) – µ2 

 = 30.07– 52 = 5.067 

d σn = 2.25 
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9 a E(N) = –1 × 0.1 + 0 × 0.3 + 1 × 0.1 + 2 × 0.2 + 3 × 0.3 

           = 1.3 

  E(N 2) = (–1)2 × 0.1 + 02 × 0.3 + 12 × 0.1 + 22 × 0.2 + 32 × 0.3 

             = 3.7 

  2
nσ  = E(N 2) – µ2 

         = 3.7 – 1.32 = 2.01 

  σn = 1.42 

 b E(R) = 11 × 0.12 + 12 × 0.18 + 13 × 0.21 + 14 × 0.19 + 15 × 0.16 

    + 16 × 0.11 + 17 × 0.03 

          = 13.54 

  E(R 2) = 112 × 0.12 + 122 × 0.18 + 132 × 0.21 + 142 × 0.19 + 152 × 0.16  

    + 162 × 0.11 + 172 × 0.03 

             = 186 

  2
rσ  = E(R2) – µ2 

        = 186 – 13.542 = 2.67 

  σr = 1.63 
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10 

TI-Nspire CAS 

ClassPad 
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 a P(Z = z) = 
2 2
22

z +   when x = 0, 1, 2, 3. 

   

 b E(Z) = 0 × 1
11

 + 1 × 3
22

 + 2 × 3
11

 + 3 × 1
2

 

           = 24 2.18
11

=  

                                 2.182(3dp)=  

 c E(Z 2) = 02 × 1
11

 + 12 × 3
22

 + 22 × 3
11

 + 32 × 1
2

 

   = 63 5.72
11

=  

  2
zσ  = E(Z 2) – µ2 

         = 5.72 – 2.18 2 = 0.96694 

  σz = 0.983 (3 dp) 

  µ = 2.182 (3 dp) and σz = 0.983 (3 dp) 
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11 

TI-Nspire CAS 

ClassPad 

E(Y) = 2 × 0.16 + 4 × 0.23 + 6 × 0.31 + 8 × 0.18 + 10 × 0.12 

        = 5.74 

E(Y 2) = 22 × 0.16 + 42 × 0.23 + 62 × 0.31 + 82 × 0.18 + 102 × 0.12 

  = 39 

2
yσ  = E(Y 2) – µ2 

 = 39 –5.742 = 6.05 
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12 a 

TI-Nspire CAS 

ClassPad 

E(x) = 1200 × 0.056 + 1300 × 0.189 + 1400 × 0.274 + 1500 × 0.296 

+ 1600 × 0.185 

 ≈ 1437 
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E(x 2) = 12002 × 0.056 + 13002 × 0.189 + 14002 × 0.274 + 15002 × 0.296 

+ 16002 × 0.185 

  = 2 076 690 

2
xσ  = E(x 2) – µ2 

 = 2 076 690 – 1436.52 

  = 13157.75 

σx
  = 114.7 
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 b  

  TI-Nspire CAS 

   

  ClassPad 

    

  E(y) = 300 × 0.268 + 310 × 0.333 + 320 × 0.162 + 330 × 0.14 + 340 × 0.062 

    + 350 × 0.023 + 360 × 0.012 

          = 315.12 
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E(y 2) = 3002 × 0.268 + 3102 × 0.333 + 3202 × 0.162 + 3302 × 0.14 + 3402 × 0.062 

+ 3502 × 0.023 + 3602 × 0.012 

  = 99 496 

2
yσ  = E(y 2) – µ2 

 = 99 496 – 315.122 

  = 195.39 

σy
  = 13.98 ≈ 14 

13 

TI-Nspire 
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 ClassPad 

   

 a E(X) = 51 × 0.05 + 53 × 0.08 + 56 × 0.1 + 59 × 0.23 + 60 × 0.25 

    + 61 × 0.16 + 66 × 0.09 + 69 × 0.04 

          = 59.42 

 b E(X 2) = 512 × 0.05 + 532 × 0.08 + 562 × 0.1 + 592 × 0.23 + 602 × 0.25 

    + 612 × 0.16 + 662 × 0.09 + 692 × 0.04 

   = 3546.84 

  2
xσ  = E(X 2) – µ2  

         = 3546.84 – 59.422  

         = 16.1 

 c σx
  = 4.01 
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Reasoning and communication 

14 E(X) = 1 × 0.2  + 3 × 0.4 + k × 0.1 + 6 × 0.3 

        = 3.2 + 0.1k 

E(X 2) = 12 × 0.2  + 32 × 0.4 + k2 × 0.1 + 62 × 0.3 

  = 14.6 +0.1k2 

2
xσ  = E(X2) – µ2 

 = 14.6 +0.1k2– (3.2 + 0.1k )2 

But 2
xσ  = 3.41 

so 3.41 =14.6 + 0.1k2– (3.2 + 0.1k )2 

k = 5 (k is integer) 

15 E(Y) = 1 × 0.1 + k × 0.3 +7 × 0.4 + 11 × 0.2 

       = 5.1 + 0.3k 

E(Y 2) = 12 × 0.1 + k2 × 0.3 + 72 × 0.4 + 112 × 0.2 

  = 43.9 +0.3k2 

2
yσ  = E(Y2) – µ2 

 = 43.9 + 0.3k2– (5.1 + 0.3k)2 

But 2
yσ  = 10.6 

so 10.6 = 43.9 + 0.3k2 – (5.1 + 0.3k)2 

k = 3 (k is integer) 
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16 Faces of two dice    Sum of the faces (S) 

 (1, 1)  (1, 2)  (1, 3)  (1, 4)  (1, 5)  (1, 6)    (2)  (3)  (4)  (5)  (6)  (7) 

 (2, 1)  (2, 2)  (2, 3)  (2, 4)  (2, 5)  (2, 6) (3)  (4)  (5)  (6)  (7)  (8) 

 (3, 1)  (3, 2)  (3, 3)  (3, 4)  (3, 5)   (3, 6) (4)  (5)  (6)  (7)  (8)  (9) 

 (4, 1)  (4, 2)  (4, 3)  (4, 4)  (4, 5)  (4, 6) (5)  (6)  (7)  (8)  (9)  (10) 

 (5, 1)  (5, 2)  (5, 3)  (5, 4)  (5, 5)  (5, 6) (6)  (7)  (8)  (9)  (10)  (11) 

 (6, 1)  (6, 2)  (6, 3)  (6, 4)  (6, 5)  (5, 6) (7)  (8)  (9)  (10)  (11)  (12) 

 

 

 a E(S) = 2 × 1
36

 + 3 × 1
18

 + 4 × 1
12

 + 5 × 1
9

 + 6 × 5
36

 + 7 × 1
6

 + 8 × 5
36

 + 9 × 1
9

 

    + 10 × 1
12

 + 11 × 1
18

 + 12 × 1
36

 

          = 7 

 b E(S 2) = 22 × 1
36

 + 32 × 1
18

 + 42 × 1
12

 + 52 × 1
9

 + 62 × 5
36

 + 72 × 1
6

 + 82 × 5
36

 

     + 92 × 1
9

 + 102 × 1
12

 + 112 × 1
18

 + 122 × 1
36

 

             = 54.83 

  2
sσ  = E(S 2) – µ2 

        = 54.83– 72 

         = 5.83 

 c σs
  = 2.42
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17 a 

b E(T) = 4 × 1
36

+ 6 × 1
9

+ 8 × 5
18

+ 10 × 1
3

+ 12 × 1
4

 = 9.33 

E(T 2) = 42 × 1
36

+ 62 × 1
9

+ 82 × 5
18

+ 102 × 1
3

+ 122 × 1
4

  = 91.55 

2
tσ  = E(T 2) – µ2 

 = 91.55 – 9.332 

  = 4.44 
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18 The outcomes   X (The sum)  Y (The smaller) 

 (1, 1)  (1, 2)  (1, 3)  (2)  (3)  (4)  (1)  (1)  (1) 

 (2, 1)  (2, 2)  (2, 3)    (3)  (4)  (5)  (1)  (2)  (2) 

 (3, 1)  (3, 2)  (3, 3)  (4)  (5)  (6)  (1)  (2)  (3) 

 a  

   

 b E(X) = 2 × 1
9

 + 3 × 2
9

 + 4 × 3
9

 + 5 × 2
9

 + 6 × 1
9

 

           = 4 

  E(X 2) = 22 × 1
9

 + 32 × 2
9

 + 42 × 3
9

 + 52 × 2
9

 + 62 × 1
9

 

             = 17.33… 

  2
xσ  = E(X 2) – µ2 

        = 17.33 – 42 

        = 1.33… 
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c E(Y) = 1 × 5
9

+ 2 × 3
9

+ 3 × 1
9

 = 1.56… 

E(Y 2) = 12 × 5
9

+ 22 × 3
9

+ 32 × 1
9

 = 2.88… 

2
yσ  = E(Y 2) – µ2 

 = 2.89– 1.552 

  = 0.469… 
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Exercise 2.08 Applications of discrete random variables 

Reasoning and communication  

1 a 

 3 dice same 2 dice same No dice same 

X (winnings) $5 0 –$5 

P(X = x) 6
216

 90
216

 120
216

 

 

  E(X) = 5 × 6
216

 + 0 × 90
216

 + (–5) × 120
216

 = 570$
216

−  

           = –$2.64 

 b No, the game is not fair as you are averaging a loss. 

2  

  

  E(X) = 3 × 1
216

 + 2 × 15
216

+ 1 × 75
216

 + (–1) × 125
216

= 17$
216

−  

           = –$0.08 

  The house percentage = 0.07878 100% 7.9%
1

× =
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3 

x $29 9350 –$650 

P(X = x) 0.00 212 0.997 88 

E(X) = $29 9350 × 0.002 12 + (–$650) × 0.997 88 

        = –$14 

The expected value for each policy for the insurance company is $14. 

4 E(X) = 0 × 0.1 + 1 × 0.15 + 2 × 0.15 + 3 × 0.2 + 4 × 0.4 

 = 2.65 

5 a E(X) = 0 × 0.95 + 1 × 0.03 + 2 × 0.015 + 3 × 0.003 + 4 × 0.0015 + 5 × 0.0005 

 = 0.0775 

b 0 
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6 a P(fewer than 4 persons are in any given household) = 0.269 + 0.334 + 0.162 

         = 0.765 

 b E(X) = 1 × 0.269 + 2 × 0.334 + 3 × 0.162 + 4 × 0.140 + 5 × 0.062 + 6 × 0.023 

     + 7 × 0.012 

         = 2.51 

 c E(X 2) = 12 × 0.269 + 22 × 0.334 + 32 × 0.162 + 42 × 0.140 + 52 × 0.062 

     + 62 × 0.023 + 72 × 0.012 

             = 8.269 

  2
xσ  = E(X 2) – µ2 

        = 8.269 – 2.512 

         = 1.969 

  σx ≈ 1.4 

7 E(X) = –1 × 0.3 + 0 × 0.4 + 3 × 0.2 + 5 × 0.1 

         = 0.8 

 Favours the player by 80 cents a game. 
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8 a 

E(X) = (–2) × 0.3 + (–1) × 0.4 + 2 × 0.2 + 4 × 0.1 

       = –0.2 

Favours the house by 20 cents a game. 

b 

E(X) = (–4) × 0.3 + (–2) × 0.4 + 4 × 0.2 + 8 × 0.1 

       = –0.4 

Favours the house by 40 cents a game instead of 20 cents a game. 
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9 

  

 E(X) = $19 990 × 0.0001 + $490 × 0.0020 + (–$10) × 0.9979 

          = –$7 

 Each person loses an average of $7, NOT a good investment. 

 

10 

 

 

 

 Area of black: Assume square has a side of one unit. 

 Radius is 0.25. AΟ = πr2 = 0.196 3495 ≈ 0.196 

 E(X) = $0 × 0.25 + $3 × 0.196 + $5 × 0.196 + (–$5) × 0.357 

          = –$0.217 

 On average, you would lose money if you play, about 22 cents per game. 

Outcome ($) Blue 

$0 

Black 

$3 

Green 

$5 

Other 

–$5 

Probability 0.25 0.196 0.196 0.357 
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11 

E(X) = $72 500 × 0.017 + (–$2500) × 0.983 

       = –$1225 

The insurance company will make $1225 on each policy. 

12 

E(X) = $(50 000 – a) × 0.009 + (–$a) × 0.991 

Given E(X) = –$225 

∴ –225 = (50 000 – a) × 0.009 + (–a) × 0.991 

a = 675 

To achieve the desired profit, the insurance company needs to charge a 38-year-old 

male a $675 premium. 

x $72 500 –$2500 

P(X = x) 0.017 0.983 

x $(50 000 – a) –$a 

P(X = x) 0.009 0.991 
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13  

 

 

 a E(X) = $970 × 0.005 + (–$30) × 0.995 

           = –$25 

  The expected gain for the insurer for each thousand dollars of coverage is $25. 

 b $3000, as 3 × $25 = $75, which covers the costs. 

14 a E(X) = 0 × 0.90 + 1 × 0.06 + 2 × 0.02 + 3 × 0.08 + 4 × 0.006 + 5 × 0.006 

           = 0.178 

 b Pay per day = $300 + 0.178 × $200 = $335.60 

 c $300 

 

x $970 –$30 

P(X = x) 0.005 0.995 
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15 Faces of two dice Sum of the faces S 

(1, 1)  (1, 2)  (1, 3)  (1, 4)  (1, 5)  (1, 6) (2)  (3)  (4)  (5)  (6)  (7) 

(2, 1)  (2, 2)  (2, 3)  (2, 4)  (2, 5)  (2, 6) (3)  (4)  (5)  (6)  (7)  (8) 

(3, 1)  (3, 2)  (3, 3)  (3, 4)  (3, 5)   (3, 6) (4)  (5)  (6)  (7)  (8)  (9) 

(4, 1)  (4, 2)  (4, 3)  (4, 4)  (4, 5)  (4, 6) (5)  (6)  (7)  (8)  (9)  (10) 

(5, 1)  (5, 2)  (5, 3)  (5, 4)  (5, 5)  (5, 6) (6)  (7)  (8)  (9)  (10)  (11) 

(6, 1)  (6, 2)  (6, 3)  (6, 4)  (6, 5)  (5, 6) (7)  (8)  (9)  (10)  (11)  (12) 

a E(X) = –3 × 8
36

+ 6 × 6
36

+ 0 × 22
36

        = $0.33 

b 33 cents per game 

16 a 

E(X) = $10 000 × 0.2 + $5000 × 0.2 + (–$1000) × 0.6 

 = $2400 

b –$1000
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17 

E(X) = 2 × 0.5 + 3 × 0.25 + 4 × 0.125 + 5 × 0.125 

 = 2.875 
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18 You would expect the standard deviation for the first exam to be more than in the second. 

19 E(X) = 100 × 0.15 + 250 × 0.35 + 300 × 0.25 + 350 × 0.15 + 400 × 0.1 

       = $270 

The expected return is $270 000. 
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Chapter 2 Review 

Multiple choice 

1 D because P(C ∪  D) = P(C) + P(D) – P(C ∩  D) 

            = 0.75 + 0.36 – 0.29 

            = 0.82 

2 E P(M|N) = ? P(M ∪ N) = P(M) + P(N) – P(M ∩  N) 

    P(M ∪ N) = 0.56 + 0.24 – 0.18 

    P(M ∪ N) = 0.62 

  P(M|N) = 0.18 0.75
0.24

=  

   

3 E P(0) = 1
8

, P(1) = 3
8

, P(2) = 3
8

, P(3) = 1
8  

  as HHH,     HHT, HTH,THH,    TTH,THT,HTT, TTT  

  Ratios 1 : 3 : 3: 1 out of 8 

4 A As the value must be between 0 and 1 inclusive. 

5 B Only specific values as there are a discrete number of values, each of which has  

  a definite probability. 

6 A The total of p(x) is 1 and they are all positive. 
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7 A 4 With 8 possible successes, x ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8} but sample size 

is 4, so max is 4. 

8 C P(X = 4) = 

10 22
4 8

32
12

  
  
  
 
 
 

⇒ breakdown of 32 into 10 and 22.

Traditionally the hypergeometric distribution is defined as 

P(X = x) = 

k N k
x n x

N
n

−  
  −  

 
 
 

9 B E(X) = 1 × 0.2 + 2 × 0.3 + 3 × 0.4 + 4 × 0.1 

        = 2.4 

10 B E(X 2) = 12 × 0.2 + 22 × 0.3 + 32 × 0.4 + 42 × 0.1 

 = 6.6 

2
xσ  = E(X 2) – µ2 

 = 6.6 – 2.42 

  = 0.84 
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11 C 0.9 

  

Rain

Rain

Rain

Dry

Dry
Dry

0.5

0.5

0.5

0.5 0.3

0.7

0.25

0.15

0.25

0.35

 

  Let X be the number of rainy days x∈ {0, 1, 2} 

x 0 1 2 

p(x) 0.35 0.4 0.25 

 

  E(X) = 0 × 0.35 + 1 × 0.4 + 2 × 0.25 

          = 0.9 
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Short answer 

12 

P(A) = 0.45, P(B) = 0.1, P(A∩B) = 0.04 

a P(not a minor repair but will need a major repair) = ( )B | AP = 0.06 

b P(not need either a minor or major repair) = 1 – 0.45 – 0.06 = 0.49 

c P(major repair required, given car requires a minor repair) 

= 0.04( | A) 0.089
0.

B
45

P = =

13 a discrete 

b continuous 

c discrete 

d continuous 

e discrete 

f discrete 

g continuous 

h discrete 

Minor
 A

Major
    B

0.040.41 0.06
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14 a Could represent a probability distribution as the total is equal to one. 

 b Could represent a probability distribution as the total is equal to one. 

 c Could not represent a probability distribution as probabilities cannot equal  

  a negative number. 

15 a 

   

 b 

   

 c ( )p x∑  = 1 and 0 ≤ p(x) ≤ 1, for each distribution. 

 d The second distribution is uniform because the probabilities are identical. 
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16 a 

b 
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17 a 

   

 b P(odd) = P(7) = 1
5

 

 c The distribution is uniform as all the probabilities are the same. 

18 a  

t 11 12 13 14 15 16 17 18 19 20 

f 2 3 4 6 1 3 0 1 1 4 

P(T = t) 0.08 0.12 0.16 0.24 0.04 0.12 0 0.04 0.04 0.16 

 

 b 3 out of 25, i.e. 0.12 

 c 10 out of 25, i.e. 0.4 

19 a N = 40, n = 5, k = 7, x ∈ {0, 1, 2, 3, 4, 5} 

 b N = 5000, n = 10, k = 1000, x ∈ {0, 1, 2, …, 10} 

 c N = 100, n = 15, k = 12, x ∈ {0, 1, 2, …, 12} 
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20 a N = 40, n = 10, k = 12, x = 5, ( )
12 28

5 5
40

10
0.095 18C C

C
P x = ==

b N = 65, n = 12, k = 25, x = 4, ( )
25 40

4 8
65

12
0.244 15C C

C
P x = ==

c N = 250, n = 60, k = 30, x = 15, ( )
30 220

15 45
250

60
0.00065615 C C

C
P x == =

21 a 

b E(D) = 0 × 1
6

+ 1 × 5
18

+ 2 × 2
9

+ 3 × 1
6

+ 4 × 1
9

+ 5 × 1
18

  = 1.944 
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22 

 

 E(T) = 1 × 2
33

 + 2 × 3
33

 + 3 × 4
33

 + 4 × 2
33

 + 5 × 8
33

 + 6 × 4
33

 + 7 × 3
33

 + 8 × 4
33  

    
+ 9 × 1

33
 + 10 × 2

33
 

        = 5.273 

 E(T 2) = 12 × 2
33  

+ 22 × 3
33  

+ 32 × 4
33  

+ 42 × 2
33  

+ 52 × 8
33  

+ 62 × 4
33  

+ 72 × 3
33  

    
+ 82 × 4

33  
+ 92 × 1

33
 + 102 × 2

33  

  = 33.636 

  2
tσ  = E(T 2) – µ2 

        = 33.636– 5.2732 

        = 5.83 
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23 E(X) = –2 × 0.25 + 0 × 0.125 + 2 × 0.5 + 4 × 0.125 

        = 1 

E(X 2) = (–2)2 × 0.25 + 02 × 0.125 + 22 × 0.5 + 42 × 0.125 

= 5 

 2
xσ  = E(X 2) – µ2 

 = 5– 12 

  = 4 

24 a E(Y) = 200 × 0.05 + 300 × 0.15 + 400 × 0.35 + 500 × 0.25 + 600 × 0.15 

+ 800 × 0.05 

       = 450 

b E(Y 2) = 2002 × 0.05 + 3002 × 0.15 + 4002 × 0.35 + 5002 × 0.25 + 6002 × 0.15 

+ 8002 × 0.05 

= 220 000 

2
yσ  = E(Y 2) – µ2 

 = 220 000 – 4502 

  = 17 500 

c σy = 132.3 
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Application 

25 a 

   

   

 b E(X) = 0 × 1
64

 + 1 × 18
64

 + 2 × 18
64

 + 3 × 27
64

 

          = 2.1
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26 

  

d 1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 30 36 

frequency 1 2 2 3 2 4 2 1 2 4 2 1 2 2 2 1 2 1 

P(D = d) 1
36

 2
36

 2
36

 3
36

 2
36

 4
36

 2
36

 1
36

 2
36

 4
36

 2
36

 1
36

 2
36

 2
36

 2
36

 1
36

 2
36

 1
36

 

 E(D) = 1 × 1
36

 + 2 × 2
36

 + 3 × 2
36  

+ 4 × 3
36

 + 5 × 2
36  

+ 6 × 4
36

 + 8 × 2
36  

+ 9 × 1
36  

   
+ 10 × 2

36  
+ 12 × 4

36  
+ 15 × 2

36  
+ 16 × 1

36  
+ 18 × 2

36  
+ 20 × 2

36  

   
+ 24 × 2

36  
+ 25 × 1

36  
+ 30 × 2

36  
+ 36 × 1

36
 

         = 12.25 
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E(D 2) = 12 × 1
36

+ 22 × 2
36

+ 32 × 2
36

+ 42 × 3
36

+ 52 × 2
36

+ 62 × 4
36

+ 82 × 2
36

+ 92 × 1
36

+ 102 × 2
36

+ 122 × 4
36

+ 152 × 2
36

+ 162 × 1
36

+ 182 × 2
36

+ 202 × 2
36

+ 242 × 2
36

+ 252 × 1
36

+ 302 × 2
36

+ 362 × 1
36

  = 238.83 

2
dσ  = E(D 2) – µ2 

 = 238.83 – 12.252 

      =  79.97 

The distribution is not uniform as the probabilities are different. 

27 80 = 14 + 66 

N = 80, k = 14, n = 15 

a P(four will be defective) = ( )
14 66

4 11
80

15
0.16204 C

C
P Cx ×

== =  

b P(at least three will be defective) 

= P(3) + P(4) + … 

= 1 – P(0) – P(1) – P(2) 

= 1 – 
66

15
80

15

C
C

 – 
14 66

1 14
80

15

C C
C
× –

14 66
2 13
80

15

C C
C
×

= 1 – 0.0404… – 0.1633… – 0.2804… 

= 0.5158… 
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28 

X $99 999 $24 999 $999 $99 $9 $1 –$1 

P(X = x) 
7

1
10 7

2
10 7

25
10 7

25000
10 7

25000
10

0.12 0.875 

a 0.125 000 28 

b E(X) = $99 999 × 7
1

10
 + $24 999 × 7

2
10

 + $999 × 7
25

10

+ $99 × 7
25000
10

 + $9 × 7
25000
10

 + $1 × 0.12 – $1 × 0.875 

       = –0.4675 

Payout is $1 – 0.4675 = 53 cents per ticket. 

c House percentage = 0.4675 × 100% ≈ 47% 
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29 Two six-sided dice    Sum of faces (S) 

 (1, 1)  (1, 2)  (1, 3)  (1, 4)  (1, 5)  (1, 6)        (2)  (3)  (4)  (5)  (6)  (7) 

 (2, 1)  (2, 2)  (2, 3)  (2, 4)  (2, 5)  (2, 6) (3)  (4)  (5)  (6)  (7)  (8) 

 (3, 1)  (3, 2)  (3, 3)  (3, 4)  (3, 5)  (3, 6) (4)  (5)  (6)  (7)  (8)  (9) 

 (4, 1)  (4, 2)  (4, 3)  (4, 4)  (4, 5)  (4, 6) (5)  (6)  (7)  (8)  (9)  (10) 

 (5, 1)  (5, 2)  (5, 3)  (5, 4)  (5, 5)  (5, 6) (6)  (7)  (8)  (9)  (10)  (11) 

 (6, 1)  (6, 2)  (6, 3)  (6, 4)  (6, 5)  (6, 6) (7)  (8)  (9)  (10)  (11)  (12) 

 

 

 

 

 

 

 a E(S) = $10 × 16
36

 + (–$5) × 20
36

 

          = $1.67 

 b No. More chance of winning than losing. 

 c Change the sums that are included so winning and losing were equal. 

  E.g. less than 6 or an 8, 11 or 12; more than 7 or a 4 

s Less than 6 or 

greater than 9 

$10 

Otherwise 

–$5 

P (S = s) 16
36

 20
36
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30 

X $10 000 $5 000 –$1000 

P(X = x) 0.2 0.2 0.6

a E(X) = $10 000 × 0.2 + $5 000 × 0.2+ (–$1000) × 0.6 

        = $2400 

b The most likely value of X is –$1000. 

31 P(0W) = 
17 3

3 0
20

3
0.5965C C

C
×

=

P(1W) = 
17 3

2 1
20

3
0.3579C C

C
×

=

P(2W) = 
17 3

1 2
20

3
0.0447C C

C
×

=

P(3W) = 
17 3

0 3
20

3
0.00008C C

C
×

=

E(X) = $4.50 × 0.000 08 + $1.50 × 0.0447 + (–$0.50) × 0.5965 

 = –$0.23 

The player should expect to lose 23 cents on average per game.
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32 Sales demand: 

E(X) = 5000 × 0.3 + 6000 × 0.6 + 8000 × 0.1 

        = 5900 

Variable costs: 

E(X) = $3 × 0.1 + $3.50 × 0.3 + $4 × 0.5 + $4.50 × 0.1 

        = $3.80 

Sale price = $6 – $3.80 = $2.20 

Revenue – costs = 5900 × $2.2 – $8000 = $4980 
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